Robust hippocampal and cortical target engagement induced by ABX-002, a novel thyromimetic in development for major depressive disorder (MDD)

Deidre A. MacKenna, Michaelanne B. Woerner, Aryan Alavi, Amy Klova, Jeffrey Vivian, Brian A. Stearns Autobahn Therapeutics, San Diego, CA.

Introduction

- Thyroid hormone (T_3) and thyroxine (T_4) are both used to treat depression typically as augmentation therapy. Dose is often limited by known tolerability limitations of thyroid hormone (e.g., cardiac effects).
- ABX-002 enhances brain delivery of a thyromimetic through the use of fatty acid amide hydrolase (FAAH) activated mechanisms. FAAH is highly expressed in the CNS and prodrugs enhance delivery ^{1,2}

Objectives of this work

- Compare ABX-002 to T₃ in mouse for brain vs. heart target engagement (TE)
- Assess brain subregions to confirm activity in cortex & hippocampus \rightarrow 2 regions involved in depression
- Evaluate brain & cardiac TE in NHP as a bridge to humans

FAAH Expression Across Species

FAAH Expression (Northern)

(A) Relative mRNA expression^{3,4} & (B) Tissue FAAH activity (cleavage of AMC) in mouse, rat, NHP & human S9 fractions from different tissues

Tissue Target Engagement in Mouse

Gene expression in brain (blue) & heart (orange) after a single administration of ABX-002 (left) or T₃ (right) to C57BI/6 mice. Hemibrains were harvested 4 or 8 hr after the dose and RNA analyzed by custom Nanostring panel. Graphs represent the average fold change on a log₂ scale for 6 genes in the brain (Dio3, Hr, Klf9, Sfrp5, Robo3, Flywch2) and 4 genes in the heart (Hr, Ucp3, Ppard, Abcd2).

ABX-002 has a greater window b/t brain & heart TE than T₃ in the mouse

To investigate which subregions within the brain resulted in meaningful changes in gene expression, female C57BL/6 mice were dosed with vehicle, 10 or 100 µg/kg ABX-002 for 7 days. Brains were harvested 4 hrs after the last dose. Cerebellum was removed first with cortical and hippocampal enriched samples harvested as shown. RNA was analyzed using a custom Nanostring plexset panel. Dio3 levels were BLOQ, so were analyzed separately by qPCR Table lists the baseline counts in each region followed by the fold change for each gene compared with vehicle.

Dio3 was the most sensitive gene induced by ABX-002 treatment

Cerebellum			Cortex			Hippocampus		
seline	Fold Change vs.V		Baseline	Fold Change vs.V		Baseline	Fold Change vs.V	
(counts)	10 μpk	100 μpk	(counts)	10 μpk	100 μpk	(counts)	10 μpk	100 μpk
<50	6.9****	22****	<50	3.0****	39****	<50	4.3****	8.2****
) ± 170	1.1	1.7***	800 ± 17	1.3***	2.6 ****	432 ± 93	1.3	3.0****
) ± 530	0.95	0.79	8680 ± 270	1.0	1.2***	772 ± 174	0.89	1.6*
5 ± 38	0.97	0.65**	741 ± 13	1.0	1.3****	BLOQ		
5 ± 19	1.0	1.3	BLOQ			BLOQ		
7 ± 26	0.90	0.97	447 ± 21	1.1	1.5****	297 ± 20	1.5**	2.1****
LOQ			198 ± 11	1.2	2.5****	134 ± 19	1.5*	3.5****
0 ± 96	1.0	1.2	812 ± 27	1.1	1.2*	584 ± 32	1.2*	1.4****
	seline unts) <50) ± 170) ± 530 5 ± 38 5 ± 19 7 ± 26 _OQ 0 ± 96	$ Fold Chan Fold Chan 10 \mupk 6.9**** 0 ± 170 1.1 0 ± 530 0.95 5 ± 38 0.97 5 ± 19 1.0 7 ± 26 0.90 CQ 0 ± 96 1.0 1.0 $	Fold Change vs.VSeline unts)Fold Change vs.V $10 \ \mu pk$ $100 \ \mu pk$ $50 \ 6.9^{****}$ 22^{****} 22^{****} $1.1 \ 1.7^{***}$ $0 \pm 170 \ 1.1 \ 1.7^{***}$ 1.7^{***} $0 \pm 530 \ 0.95 \ 0.79$ 0.65^{**} $5 \pm 38 \ 0.97 \ 0.65^{**}$ $1.3 \ 1.3 \ 2.26 \ 0.90 \ 0.97 \ 0.97 \ 0.91 \ $	Fold Change vs.VBaseline (counts)Seline unts)10 μ pk100 μ pkBaseline (counts) 50 6.9^{****} 22^{****} <50 0 ± 170 1.1 1.7^{***} 800 ± 17 0 ± 530 0.95 0.79 8680 ± 270 5 ± 38 0.97 0.65^{**} 741 ± 13 5 ± 19 1.0 1.3 BLOQ 447 ± 21 0.90 0.97 447 ± 21 OQ 1.0 1.2 812 ± 27	Colspan=4Fold Change vs.VBaseline (counts)Fold Change vs.V10 µpk100 µpk $(counts)$ Fold Change vs.V $(counts)$ $(counts)$ $(10 µpk)$ $(counts)$	Seline fold Change vs.VFold Change vs.V10 µpk100 µpkCounts)Fold Change vs.V10 µpk100 µpk100 µpk 6.9^{****} 22****<50 3.0^{****} 0 ± 170 1.11.7*** 800 ± 17 1.3^{***} 0 ± 530 0.950.79 8680 ± 270 1.0 1.2^{***} 5 ± 38 0.97 0.65^{***} 741 ± 13 1.0 1.3^{****} 5 ± 19 1.01.3BLOQ 1.1 1.5^{****} $0 Q$ 0.900.97 447 ± 21 1.1 1.5^{****} 0 ± 96 1.01.2 812 ± 27 1.1 1.2^{*}	Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Fold Change vs.VBaseline (counts)Fold Change vs.VBaseline (counts)10 µpk100 µpk100 µpk100 µpk100 µpk100 µpkcounts)50 6.9^{****} 22^{****} <50 3.0^{****} 39^{****} <50 0 ± 170 1.1 1.7^{***} 800 ± 17 1.3^{****} 2.6^{****} 432 ± 93 0 ± 530 0.95 0.79 8680 ± 270 1.0 1.2^{***} 772 ± 174 5 ± 38 0.97 0.65^{***} 741 ± 13 1.0 1.3^{****} $BLOQ$ 5 ± 19 1.0 1.3 $BLOQ$ $I.1$ $I.5^{****}$ 297 ± 20 $0 2$ 0.90 0.97 447 ± 21 1.1 1.5^{****} 297 ± 20 OQ $I.0$ $I.2$ 812 ± 27 $I.1$ $I.2^{*}$ 584 ± 32	Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Seline (10 µpkFold Charge vs.VFold Charge vs.VFold Charge vs.V10 µpk100 µpk100 µpk100 µpk100 µpk100 µpkfold Charge vs.V 250 6.9^{****} 22^{****} <50 3.0^{****} 39^{****} <50 4.3^{****} 2 ± 170 1.1 1.7^{***} 800 ± 17 1.3^{****} 2.6^{****} 432 ± 93 1.3 2 ± 530 0.95 0.79 8680 ± 270 1.0 1.2^{***} 772 ± 174 0.89 5 ± 38 0.97 0.65^{***} 741 ± 13 1.0 1.3^{****} $BLOQ$ C 5 ± 19 1.0 1.3 $BLOQ$ $BLOQ$ $BLOQ$ 1.5^{***} $2OQ$ C 108 ± 11 1.2 2.5^{****} 134 ± 19 1.5^{**} 0 ± 96 1.0 1.2 812 ± 27 1.1 1.2^{*} 584 ± 32 1.2^{*}

* p<0.05,, **p<0.01, *** p<0.001, **** p<0.0001 by ANOVA w/Dunnet's post hoc test

Tissue Target Engagement in Mouse

The fold change for each gene relative to vehicle-treated mice (on a \log_2 scale) was averaged to provide a single metric. In left panel, the same genes as used in the hemibrain studies were analyzed. In the right panel, *Dio3* was omitted since it can dominate the average & only measurable genes were included.

Hippocampus & cortex were more sensitive than cerebellum to thyromimetic stimulation by ABX-002 in the mouse

Tissue Target Engagement in NHP

- To evaluate the effects of ABX-002 in a nonhuman primate, cynomolgus monkeys were dosed with QD PO ABX-002 (n=4/group) for seven days and samples harvested 8 hrs after last dose. Six CNS regions were harvested along with heart, liver and pituitary.
- In a pilot study, RNA sequencing was performed & key genes identified as T_3 responsive in NHP brain (not shown). DIO3, HR, KLF9, DBP & RRAD were probed with custom Nanostring panel in this study.
- In heart, RNA sequencing was inconclusive, so genes validated in rodents as relevant for cardiac phenotype were assessed (MYH6, MYH7A, ATP2A2)

Dose-related target gene induction was observed in all regions for all genes probed with example data for hippocampus shown above. *DIO3* was most sensitive

gene in all regions with up to 16x induction observed. Effects on multiple genes were combined into the average fold change (in \log_2 space). Since *DIO3* may dominate the metric, values were calculated both with and without that gene.

No effect on cardiac genes (*MYH6 MYH7A* or *ATP2A2* -- genes known to be involved in cardiac phenotype observed in hyperthyroidism). At 300 μ g/kg those genes may be decreasing slightly, likely associated with pituitary-driven effects on the thyroid hormone axis.

Conclusions

References

Presented at the 51st Annual Meeting of the Society for Neuroscience, San Diego, California November 2022

Tissue Target Engagement in NHP

Tissue concentrations of active metabolite (ABX-002A) were measured in the different regions of the CNS (left) and correlated with gene expression measured from each sample. Strong TE was observed in all regions with cortex & hippocampus having greatest sensitivity & slightly better delivery than other regions. Cerebellum had the least gene induction.

 Hippocampal TE - Cortex TE Heart TE -**▼** T4

• ABX-002 induces T₃-responsive gene expression in brains of both mice & NHP; cortex & hippocampus being most sensitive regions.

• ABX-002 enhances window between brain TE & cardiac TE in both mice & NHP with interspecies differences consistent with differences in FAAH expression.

• These data provide pharmacologic support for possible follow-on human studies in depressive disorders.

¹ Meinig et al., ACS Med Chem Lett 2019, 10, 111-116 ² MacKenna et al., 73rd Annual Mtg of AAN, 2021, 1065-P ³ Cravatt et al., Nature 1996 384, 83-87 ⁴ Giang & Cravatt, PNAS 1997, 94, 2238-2242 ⁵ EJN, https://www.youtube.com/watch?v=Upf15CB29V4

