ABX-002: A fatty-acid amide hydrolase (FAAH)-activated prodrug enhances functional delivery of a potent TRB selective thyromimetic to the brain and demonstrates biological activity in models of X-linked Adrenoleukodystrophy

Deidre A. MacKenna¹, Anne Danks¹, Mohd Waseem Akhtar¹, Michaelanne Woerner¹, JP Shaw¹, Amy Klova¹, Aryan Alavi¹, Rohan Gandhi¹, Tom Scanlan², Keith Lenden¹, Chan Beals¹, Brian Stearns¹ ¹Autobahn Therapeutics, San Diego, CA, USA, ² Oregon Health & Science University, Portland, OR, USA

Introduction

- Adrenomyeloneuropathy (AMN) is caused by genetic defects in ABCD1, which encodes for adrenoleukodystrophy protein (ALDP), a peroxisomal transporter of very long chain fatty acids (VLCFAs). Loss of ALDP causes neurotoxic accumulation of VLCFAs.
- ABCD2 encodes for ALDP related protein (ALDPR), another peroxisomal transporter, which can replace ABCD1 in VLCFA transport; ABCD2 is a direct target gene of thyroid hormone, T_3
- Increasing thyroid hormone tone in the brain should increase ABCD2 expression and reduce VLCFAs.
- ABX-002 is a clinical-stage thyromimetic prodrug intended for treating patients with AMN. ABX-002 is a FAAH-activated prodrug of the thyromimetic LL-340001.

TRβ Potency and Seled

Profile	Prodrug ABX-002 (nM)	Active LL-340001 (nM)
TR βEC_{50}	>10,000	95
TRα EC ₅₀	>10,000	260
Selectivity*	n/a	16x

*Selectivity adjusted to TR α -bias of T₃ in the assays.

OPC Differentiation

ABCD2 and T₃-Target Gene Expression

LL-340001 increases ABCD2 & Hairless (HR) mRNA (RT-PCR) expression in primary skin from healthy subjects and patients with AMN (48-hour treatment). ABCD2 HR

Presented Virtually at the 73rd Annual Meeting of the American Academy of Neurology, 17-22 April 2021

1		
	M	

LL-340001 enhances mouse oligodendrocyte progenitor cell (OPC) differentiation in vitro (MBP staining after 7D Tx; n=6/concentration) with EC₅₀ values of 2.2 nM.

T₃-Target Gene Expression

ABX-002 and LL-340001 induce T_3 -regulated gene expression (Nanostring) ex vivo in precision-cut brain slices from P7-P10 mice with EC₅₀ values ~2 nM (5D Treatment; n=5/dose).

Tissue Distribution & Target Engagement

Dosed: LL-340001 ABX-002 (0.1 mg/kg PO)

- **Brain Target Engagement** 1.5₇ **ABX-002** О ш 1.0-**T3** • 260 0.51 LL-340001 0.0+ 0.1 100 10 Dose (ug/kg)
- Left: Area under the curve (AUC) of brain LL-340001 exposure after dosing of LL-340001 or ABX-002 (PO). Delivery of LL-340001 is enhanced by ABX-002. Brain-toplasma ratios of LL-340001 increase from 0.03 to 1.1 (not shown).
- **Right**: Average Log_2 -fold change of 6 T_3 -regulated genes in brain at 8 hours after oral dosing of ABX-002 or LL-340001. ABX-002 increases expression of T_3 regulated target genes in brain at ~30x lower doses than LL-340001. RNA analyzed by Quantiplex technology.

v 30 100 v ABX-002 V 30 100 V ABX-002 (µg/kg): (µg/kg): Abcd1^{-/y} WT Abcd1^{-/y} WT ABX-002 increases T_3 -regulated target gene expression, including *Abcd2* (Nanostring) and reduces C26:0-LPC (LC-MS) in plasma and brain of Abcd1-/y mice (PO, QD 12W; n=5-11/group).

Conclusions

(ng/mL)

26:0

- LL-340001 induces T_3 -regulated gene expression, including ABCD2, and differentiates OPCs in vitro, consistent with known T_3 biology.
- By enhancing delivery of LL-340001 to the brain, ABX-002 increases T_{3} target gene and *Abcd2* expression in an AMN disease model, which reduces VLCFAs in both plasma and brain.
- Collectively, these data support advancement of ABX-002 into clinical development for patients with AMN.

1085-P

Efficacy in Abcd1^{-/y} Mouse Model

